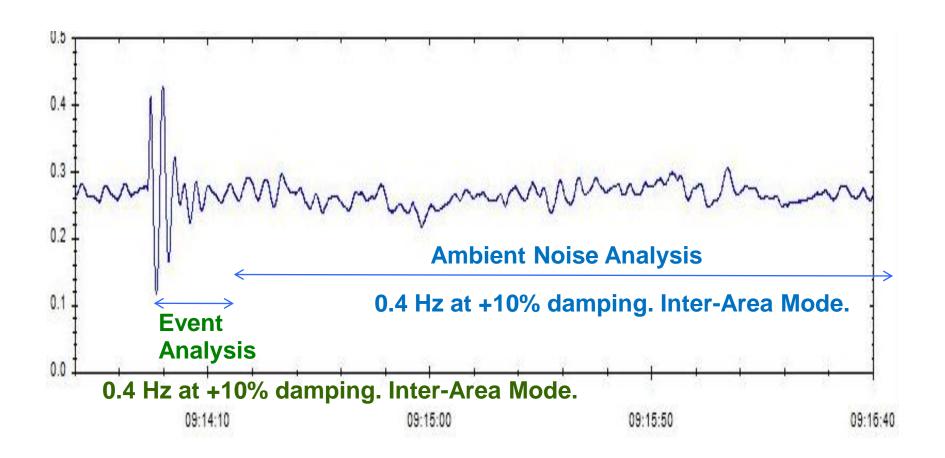
DOE/OE Transmission Reliability Program

Oscillation Monitoring System

Mani V. Venkatasubramanian

Washington State University mani@eecs.wsu.edu
June 7-8, 2016
Washington, DC


Project Objectives

- Oscillation Monitoring System for large power systems
- Monitoring hundreds of PMUs simultaneously
- System modes, forced oscillations and interactions
- Damping Monitor Engine ambient data analysis
- Event Analysis Engine detection and analysis of ringdowns and oscillations
- Real-time engines and off-line engines, Implementation at Entergy and Peak Reliability Corporation

Two Analytical Engines

Complementary Engines

- Event Analysis Engine (EAE)
 - Multiple algorithms
 - Prony, Matrix Pencil, HTLS, ERA, MFRA, and METRA.
 - Aimed at events resulting in sudden changes in damping
- Damping Monitor Engine (DME)
 - Ambient noise based. Continuous. Detects poorly damped modes and forced oscillations.
 - Fast Frequency Domain Decomposition (FFDD), Fast Stochastic Subspace Identification (FSSI), DFDO, RASSI, FDSSI, DFDD, RFDD, and DRSSI

Key Accomplishments

- Fast algorithms developed for handling large number of PMU measurements
- Damping Monitor (Ambient data)
 - Fast Frequency Domain Decomposition (1000+ signals)
 - Fast Stochastic Subspace Identification (500+ signals) (simultaneous estimation of system mode and a forced oscillation in resonance)
- Event Analysis (Ringdown data)
 - Accelerated versions of Prony, Matrix Pencil, ERA and HTLS, Improved METRA

Key Accomplishments

- Rough zone oscillations in hydro power plants interacting with system modes
- Theory for resonance effects between forced oscillations and inter-area modes developed
- November 29, 2005 WECC event was an inter-area resonance event – 20 MW Alberta oscillation led to 200 MW tie-line swings. 0.25 Hz system mode at 7% damping.
- September 5, 2015 WECC event another inter-area resonance event – 6 MW oscillation in the south led to 40 MW tie-line swings. 0.4 Hz system mode at 10% damping.

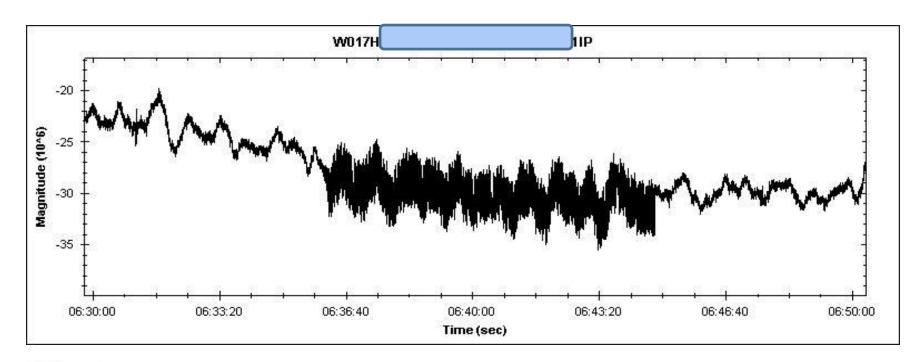
Key Accomplishments

- Damping Monitor Offline and Event Analysis Offline Version
 1.5 delivered to Entergy and Peak RC
- Offline versions have been used by Peak RC and Entergy for analysis of forced oscillations and system events
- Damping Monitor Online Version 2 and Event Analysis Online Version 1 have been delivered to Entergy and Peak RC
 - Each configured for several hundred signals
 - Under beta testing
- Several Training Workshops: July 2015 (Hosted by SCS, Atlanta, GA), Peak RC, Entergy

Publications

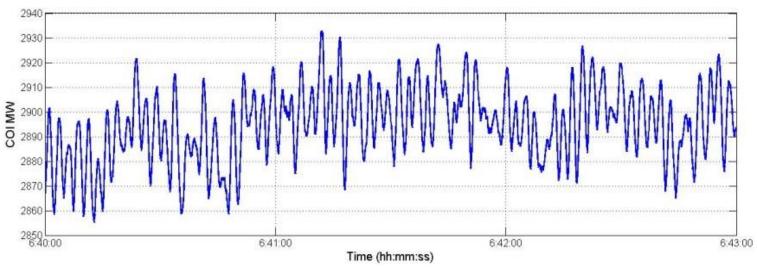
- RASSI, IEEE Trans. Power Systems, January 2014
- MFRA, IEEE Trans. Power Systems, March 2014
- PMU applications, Springer-Verlag, M. Kezunovic, S. Meliopolous,
 V. Venkatasubramanian and V. Vittal, 2014
- FFDD, IEEE Trans. Electric Power Delivery, 2015
- DFDD and DRSSI, IEEE Trans. Power Systems, 2015
- WSD, IEEE Trans. Smart Grid, 2015
- Inter-area Resonance, IEEE Trans. Power Systems, 2016
- Fast SVD methods, IEEE Trans. Power Systems, 2016
- SSR, IEEE Trans. Power Systems, 2016
- Nov 29 2005 event, IEEE Trans. Power Systems, to appear
- RFDD, IEEE Trans. Power Systems, to appear
- Unwrapping, IEEE Trans. Power Systems, to appear

Next Steps


- Final Documentations for Offline and Online modules
- Continue training activities
- Software and Engineering support for Peak RC and Entergy
- Commercialization efforts, vendor support
- Publications

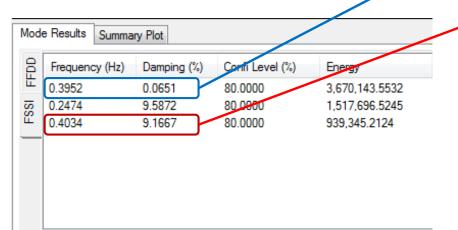
September 5 2015 WECC event

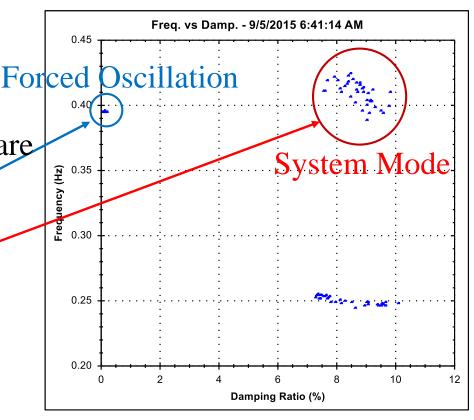
• This is MW flow from a PMU on a 500kV line near the source.



COI (Path 66) Impact (NS-B Mode)

 The resonant excitation of this 0.4 Hz mode can be seen through the ~6 MW oscillations at Hxxx resulting in ~40 MW oscillations on the COI.





Resonance Phenomenon

 The analysis was further performed using WSU Fast Stochastic Subspace Identification tool

The two separate oscillations are distinguishable clearly

